Simplicial Complexes Obtained from Qualitative Probability Orders
نویسندگان
چکیده
Edelman & Fishburn (2006) initiated the study of abstract simplicial complexes which are initial segments of qualitative probability orders. By their nature they are combinatorial generalizations of threshold complexes, however they have not been studied before. In this paper we prove that the class of initial segments of qualitative probabilities is a new class, different from all the classic generalizations of threshold complexes. More precisely we construct a qualitative probability order on 26 atoms that has an initial segment which is not a threshold simplicial complex. Although 26 is probably not the minimal number for which such example exists we provide some evidence that it cannot be much smaller.
منابع مشابه
Cohen-Macaulay-ness in codimension for simplicial complexes and expansion functor
In this paper we show that expansion of a Buchsbaum simplicial complex is $CM_t$, for an optimal integer $tgeq 1$. Also, by imposing extra assumptions on a $CM_t$ simplicial complex, we provethat it can be obtained from a Buchsbaum complex.
متن کاملVertex Decomposable Simplicial Complexes Associated to Path Graphs
Introduction Vertex decomposability of a simplicial complex is a combinatorial topological concept which is related to the algebraic properties of the Stanley-Reisner ring of the simplicial complex. This notion was first defined by Provan and Billera in 1980 for k-decomposable pure complexes which is known as vertex decomposable when . Later Bjorner and Wachs extended this concept to non-pure ...
متن کاملNew methods for constructing shellable simplicial complexes
A clutter $mathcal{C}$ with vertex set $[n]$ is an antichain of subsets of $[n]$, called circuits, covering all vertices. The clutter is $d$-uniform if all of its circuits have the same cardinality $d$. If $mathbb{K}$ is a field, then there is a one-to-one correspondence between clutters on $V$ and square-free monomial ideals in $mathbb{K}[x_1,ldots,x_n]$ as follows: To each clutter $mathcal{C}...
متن کاملSubdivisions of Toric Complexes
We introduce toric complexes as polyhedral complexes consisting of rational cones together with a set of integral generators for each cone, and we define their associated face rings. Abstract simplicial complexes and rational fans can be considered as toric complexes, and the face ring for toric complexes extends Stanley and Reisner’s face ring for abstract simplicial complexes [20] and Stanley...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Discrete Math.
دوره 27 شماره
صفحات -
تاریخ انتشار 2013